
CurriculumGuide
Introduction to Computer Science Fundamentals

Course Overview p.2

Course Structure and Delivery p.3
Course Content Outline

Standards Coverage p.4

Content Overviews p.10
Unit Overviews p.10
Project Overviews p.19
Kernels of Curiosity Overviews p.20

1



Course Overview

Introduction to Python is a year-long course that covers the basics of the Python
programming language, with a special emphasis on artificial intelligence (AI)
applications and data analysis. Students will learn about the fundamentals of
computer science (CS) and how it is used in various applications in the world around
us, particularly those built using Artificial Intelligence and Data Analysis techniques.
They will learn how to code using the programming language Python and
understand best practices while completing a variety of exercises, assessments, and
projects. Students will also learn data analysis and data visualization techniques as
well as the ethical impacts of computing.

Target Learner
The target learner is a 9th grader with no coding experience or CS background.

Duration
150-175 hours

Learning Targets
By the end of this course, students will understand:

● Computer science fundamentals and computational thinking
● The Python programming language
● Data analysis and visualization techniques
● Current computer science and AI applications, as well as their impacts on

society and the individual

2



Course Structure and Delivery

Modes of Instruction and Evaluation
The course consists of instructional videos, online and offline activities, practice
questions, formative and summative assessments, and projects.

Course Division
The course is divided into 9 units, each consisting of several lessons. Each lesson
consists of steps.

Each step consists of an instructional video as well as a practice activity for the
student. Each step is designed to take no longer than 8-10 minutes to complete and
each lesson is designed to take no more than 60 minutes to complete.

Additionally, there are projects after every 2-3 units, which allow students to build an
application tying together concepts they have learned so far.

There are also Kernels of Curiosity sprinkled throughout the course,which cover
computer science topics beyond programming. Additionally, they discuss more
ways Computer Science shows up in society, the impacts of computers on society,
and their implications on data storage, security, and privacy concerns

Assessments and Projects
Every lesson concludes with a lesson assessment, and every unit concludes with a
unit assessment. There is also a midterm, final, and three projects spread throughout
the course. T

3



Course Content Outline

Unit 1: Fundamentals of
Communicatingwith a Computer

Motivations & Applications

Print Statements and Commenting

Data Types

Variables

Bugs and Debugging

User Input and Output

Unit 1 Assessment

Unit 2: DecisionMakingwith
Computers using If-else Statements

If Statements and Operators

Decision Trees and Flow Charts

If-Else Statements

Elif Statements

Nested if statements

Unit 2 Assessment

Kernel of Curiosity 1: Data Under the Hood

Unit 3. Expanding Capabilities with
Functions and Libraries

Functions

Functions with Return Values

Built-in Functions

Using Modules and Libraries

Unit 3 Assessment

Mini Project 1: Sticks Game Implementation

4



Unit 4. Storing Datawith Lists

Creating Lists

Indexing into Lists and Changing
Elements in Lists

Appending to and Removing from Lists

Tuples and Nested Lists

Unit 4 Assessment

Midterm Exam

Unit 5. Repetition and Iterationwith
Loops

While Loops

For Loops

Looping over Strings and Lists

Nested Loops

Loops for Data Scientists

Unit 5 Assessment

Kernel of Curiosity 2: Theory of Computing

Unit 6. Storing Datawith Dictionaries

Creating a Dictionary

Accessing Elements in a Dictionary

Changing and Adding Elements in a
Dictionary

Complex data structures

Unit 6 Assessment

Kernel of Curiosity 3: Computer Systems andNetworks

Mini Project 2: Rap Generation

Kernel of Curiosity 4: Access andOwnership

5



Unit 7: Creating CustomData Types
with Classes

Creating Classes

Adding Behavior to Classes with
Methods

Unit 7 Assessment

Unit 8: Data Analysis Life Cycle What is the Data Analysis Life Cycle?

Importing and Exploring Datasets

Cleaning Datasets

Uncovering Information from Data

Unit 8 Assessment

Unit 9: Data Visualization Purpose of Data Visualizations

Creating Bar Plots

Creating Line Plots and Scatter Charts

Using Visualizations to Find Trends in
Data

Unit 9 Assessment

Kernel of Curiosity 5: Community and Access

Final Project: Most PopularMovie Prediction

Final Exam

6



Standards Coverage

The course covers both the Tennessee State Standards for High School Computer
Science (page 22) as well as AP CS Principles Standards.

These standards are reinforced throughout the course. The table below cites one
example of where each standard is met."

Tennessee State Standard
One timewhere
standard appears

CS.AT Algorithmic Thinking

Use lists to simplify solutions, generalizing computational
problems instead of repeatedly using simple variables. Unit 4

Systematically design and develop programs for broad
audiences by incorporating feedback from users. Final Project

Create prototypes that use algorithms to solve computational
problems by leveraging prior student knowledge and personal
interests. Mini Project 1

Use effective communication and accurate computer science
terminology to explain problem solving when completing a task. Mini Project 1

CS.DA Data Analysis

Create computational models that represent the relationships
among different elements of data collected from a phenomenon
or process. Unit 8

Utilize data to answer a question using a variety of computing and
data visualization methods. Unit 9

Use data analysis tools and techniques to identify patterns in
data representing complex systems. Unit 9

7

https://www.tn.gov/content/dam/tn/stateboardofeducation/documents/2022-sbe-meetings/october-28%2C-2022-sbe-meeting/10-28-22%20III%20A%20Computer%20Science%20Standards%20Framework%20for%20Grades%20K-12%20Clean.pdf
https://www.tn.gov/content/dam/tn/stateboardofeducation/documents/2022-sbe-meetings/october-28%2C-2022-sbe-meeting/10-28-22%20III%20A%20Computer%20Science%20Standards%20Framework%20for%20Grades%20K-12%20Clean.pdf
https://apcentral.collegeboard.org/media/pdf/ap-computer-science-principles-course-and-exam-description.pdf


CS.NI Networking and the Internet

Explain the tradeoffs when selecting and implementing
cybersecurity recommendations. Kernel of Curiosity 3

Identify laws regarding the use of technology and their
consequences and implications. Kernel of Curiosity 4

Evaluate strategies to manage digital identity and reputation with
awareness of the permanent impact of actions in a digital world. Kernel of Curiosity 5

Demonstrate how to apply techniques to mitigate effects of user
tracking methods. Kernel of Curiosity 4

Show an understanding of the ramifications of end-user license
agreements and terms of service associated with granting rights
to personal data and media to other entities. Kernel of Curiosity 4

Recommend security measures to address
various scenarios based on factors such as efficiency,
feasibility, and ethical impacts. Kernel of Curiosity 4

Demonstrate a fundamental understanding of API (Application
Programming Interface). Kernel of Curiosity 3

CS.PC ProgrammingConcepts

Choose and apply an appropriate iterative design process to
systematically test and refine a program to increase
performance. Mini Project 1

Develop a plan to manage and assign data values of different
types (strings, numeric, character, integer, and date) to a variable Unit 1

Create and refine programs with Boolean conditionals to
demonstrate the use of branches and logical operators. Unit 2

Design and develop iterative programs that combine control
structures, including nested loops and compound conditionals. Unit 5

Create parameters to organize a program to make it easier to
follow, test, and debug. Unit 3

8



Incorporate existing code, media, and libraries into original
programs, and give proper attribution. Unit 3

Debug (identify and fix) errors in an algorithm or program that
includes sequences and simple and complex loops following a
two-step debugging process. Unit 6

CS.IC Impacts of Computing

Discuss the ethical ramifications of hacking and its impact on
society. Kernel of Curiosity 5

Explain the privacy concerns related to the collection and
generation of data through automated processes that may not
be evident to users Unit 8

Explain the positive and negative consequences that intellectual
property laws can have on innovation. Kernel of Curiosity 4

Use tools and methods for collaboration on a project to increase
connectivity of people in different cultures and career fields. Projects

Research the impact of computing technology on possible
education and career pathways. Unit 1

Predict how computational innovations that have revolutionized
aspects of our culture might evolve. Kernel of Curiosity 5

9



Unit 1: Fundamentals of Communicatingwith a Computer

Students will explore the world of computer science, focusing on data science,
artificial intelligence, and programming. They will learn about algorithms, data types
like strings and integers, and how computers process data. Students will be
introduced to the Python programming language and will practice writing print
statements. They will also understand how AI systems and humans learn from
information, and the significance of AI ethics and safety. Furthermore, students will
delve into the usage of variables in programming, making code more efficient and
flexible, and learn the rules for naming variables and using f-strings. Finally, they will
discover how to create interactive programs by getting input from users, working
with different data types, and even build a trivia chatbot.

Learning Targets
Students will know:

● Terminology: algorithm, computer science, data science, artificial intelligence,
programming language, command, program, character, bug, syntax

● Different data types including: strings, integers, floats
● Different subfields of computer science
● Syntax for print commands, input commands, variables, and f-strings

Students will understand that:
● Computer science has applications in many different areas
● Data science involves computers analyzing information to solve problems and

artificial intelligence involves using information to make decisions
● Humans write computer programs using a programming language
● There are many different kinds of data types that a computer uses
● It is important for a computer to have accurate input data to produce correct

results
Students will be able to:

● Write commands using print statement, f-strings, and variables
● Use the string, integer, and float data types and convert between them
● Create interactive programs using the input() command
● Debug print commands, variables, and input() commands

10



Unit 2: Decision Making with Computers using If-Else
Statements

Students will learn about conditional statements, decision trees, and loops. They will
explore the 'if-else' statement, booleans, comparison and logical operators, and
practice fixing buggy code. The lesson will also teach students about creating
multiple execution paths with if-else statements and visualizing those paths with
decision trees and flow charts. Finally, they will discover while loops for automating
repetitive tasks, using break statements, and avoiding infinite loops. Students will
learn and practice these concepts through the real-world example of autonomous
vehicles.

Learning Targets
Students will know:

● Terminology: decision tree, decision tree flowchart, conditional
● Syntax for boolean expressions, mathematical operators, if-else statements,

elif-statements, nested if statements, and while loops
Students will understand that:

● Boolean statements can be used with mathematical operators to determine if
a statement is true or false

● Decision tree flowcharts are used to visually represent the process of
rule-based decision making

● An If-else statement is used to represent a decision tree flowchart with code
● While loops can be used together with if-else statements to repeat a block of

code until a certain condition is reached
Students will be able to:

● Write programs with boolean expressions and operators
● Write if-else-elif statements and nested if statements
● Write while loops with if-else statements to repeat code until some condition is

met
● Debug broken control flow logic consisting of boolean, if-else-statements, and

while loops

11



Unit 3: Expanding Capabilities with Functions and Libraries

Students will explore the fundamentals of functions in programming, including
purpose, structure, input parameters, output results, and abstraction. They will
compare programming functions to mathematical functions and gain hands-on
experience creating, debugging, and using functions. Students will also learn about
return statements, decomposition, global and local variables, and practice
problem-solving with interactive coding exercises. Students will discover Python
modules, focusing on the Python standard library, math module, and random
module, and understand how to import and use their functions. The lesson highlights
libraries, documentation, and abstraction.

Learning Targets
Students will know:

● Terminology: function, void, non-void, calling functions
● Syntax for functions and importing Python libraries

Students will understand that:
● Functions organize and reuse code that performs a specific task
● Functions take input and return output
● Python libraries include functions that have already been written to perform a

variety of tasks
Students will be able to:

● Write their own functions to perform specific tasks
● Call functions with different inputs to product different outputs
● Import and use functions from Python libraries
● Debug bugs related to writing and calling functions

12



Unit 4: Storing Datawith Lists

Students will explore lists in Python, learning how to store, organize, and access
multiple pieces of data in a single variable. They will practice creating lists, accessing
elements using indexes, and updating items within lists. Students will also discover
list slicing and how strings can be treated as collections of characters. They will learn
about the CRUD (Create, Read, Update, Delete) operations in Python, using methods
like append, pop, and insert. Students will delve into nested lists and tuples, which
help manage data in table-like structures and store immutable information,
respectively. Through various activities, students will develop skills in working with
lists and tuples to create functions and games.

Learning Targets
Students will know:

● Terminology: data structure, list, tuple, index, CRUD (create, remove, update,
delete)

● Syntax to create lists, index into lists and tuples to access elements, add
elements to lists, remove elements from lists

Students will understand that:
● Lists and tuples are used to store many pieces of data
● Data can be accessed, updated, added, and removed from lists
● Data in lists can be changed but data in tuples cannotTuples store data that

cannot be changed
Students will be able to:

● Create lists and tuples
● Access, update, append, and remove elements to and from lists
● Create nested lists
● Debug errors that result in working with lists and tuples in computer programs

13



Unit 5: Repetition and Iterationwith Loops

Students will master while and for loops in Python, learning to create, avoid mistakes,
and solve real-world problems. They'll explore indexing, the enumerate function, and
data cleaning while iterating through lists and strings. Students will be introduced to
advanced looping techniques such as nested loops and looping over nested data
structures with practical examples. By the end of the lessons, students will have a
deeper understanding of how loops enhance programming efficiency and solve
complex problems.

Learning Targets
Students will know:

● Terminology: infinite loop, finite loop, for loop, while loop
● Syntax for for loops, while loops, range function, incrementing and

decrementing while iterating
Students will understand that:

● For loops are often used with lists and nested for loops are often used with
nested lists

● For loops are used primarily used to iterate through a list of data and while
loops are used primarily to repeat code until some condition is met

● There is a risk of running an infinite loop if the condition for a while loop is not
properly defined

Students will be able to:
● Use and implement while loops and for loops with lists and strings
● Iterate over a nested list with a for loop
● Iterate “forwards” vs “backwards” in a list using a for loop
● Debug broken loop logic

14



Unit 6: Storing Datawith Dictionaries

Students will explore Python dictionaries and lists, learning to create, access, and
modify them. They'll understand mutable and immutable objects, use loops like for
loops with the range() function, and work with nested data structures. Focusing on
real-life scenarios like building a music playlist, students will create algorithms for
tasks such as counting song play counts and identifying popular artists. They'll gain
valuable experience in Python programming through hands-on exercises and
practical applications.

Learning Targets
Students will know:

● Terminology: Dictionary, key-value pair
● Syntax to create dictionaries, index into dictionaries to access and change a

value for a given key, add key-value pairs to dictionaries, remove key-value
pairs from dictionaries

Students will understand that:
● Dictionaries are used to store data in key-value pairs where looking up data

with a single key can be helpful
● Each key in a dictionary must be unique but the same value can exist for two

different keys
● Key-value pairs in dictionaries can be accessed, changed, added, or removed

Students will be able to:
● Create dictionaries
● Access, update, append, and remove key-value pairs to and from dictionaries
● Create and use complex data structures combining lists, dictionaries, and

loops
● Debug errors that result in working with dictionaries in computer programs

15



Unit 7: Creating CustomData Typeswith Classes

Students will explore Python classes, constructors, and methods, learning to create
custom data types and understand their real-world applications. They'll develop
coding skills by defining classes, creating constructors, and exploring method types
in object-oriented programming. Through hands-on activities, students will gain
experience in creating unique objects and using methods effectively, providing them
with a strong foundation in Python classes and their practical uses.

Learning Targets
Students will know:

● Terminology: class, object, static method, instance method, class method
● Syntax to create a class, class objects, and various methods

Students will understand that:
● Classes are used to build custom data types
● Class methods can change class variable values that would apply to all

objects of a class and they enable different kinds of class objects for different
use cases

● Instance methods can change instance variable values that would apply to a
specific instance or object of the class

● Static methods cannot change either the instance or class variables
Students will be able to:

● Create and instantiate a class to create a custom data type
● Create instance methods, class methods, and static methods
● Call various methods on class objects
● Debug creating and using classes

16



Unit 8: Data Analysis Life Cycle

Students will learn the data analysis lifecycle, working with the Pandas library in
Python to manage data sets. They'll practice importing, exploring, selecting, and
manipulating data, as well as handling missing values and using data visualization
techniques. By mastering data formatting, cleaning, and analyzing techniques such
as filtering, sorting, and groupby aggregations, students will be well-equipped to
make informed decisions based on accurate, consistent data analysis

Learning Targets
Students will know:

● Terminology: frequency, mean, median, mode
● Syntax to use Pandas to import, process, modify and analyze data

Students will understand that:
● Analyzing and processing data accurately is a key part of building reliable AI

systems
● Analyzing data can help us understand patterns and key features of a dataset

that can be used to make conclusions and predictions
Students will be able to:

● Use Pandas to import datasets
● Use Pandas to format and prepare datasets for analysis
● Use Pandas to modify a dataset using python libraries (e.g. add/remove

columns, remove outliers, etc.)
● Analyze key features of a data set, including max, min, frequency, mean,

median, mode

17



Unit 9: Data Visualization

Students will explore data visualization and analysis using Python libraries. They'll
learn to create bar, line, and scatter charts for different data types, and customize
plots for readability. By analyzing rainfall data, students will understand the
usefulness of data analysis in real-life scenarios. The lesson covers four analysis
types: descriptive, diagnostic, predictive, and prescriptive, highlighting their role in
understanding trends, making predictions, and informing decisions.

Learning Targets
Students will know:

● Terminology: bar plot, scatter plot, linear plot, correlation, causation
● Syntax to use Matplotlib and Seaborn to graph visualizations

Students will understand that:
● Visualizing data can help us understand key features and patterns of a

dataset that can be used to make conclusions and predictions about the data
● Having incorrect data can lead to misleading visualizations and incorrect

conclusions about the data
● Correlation between data does not necessarily mean causation

Students will be able to:
● Use the Python libraries Matplotlib and Seaborn to create visualizations of

various features and patterns within a dataset
● Customize graphs and plots to include titles and axis labels
● Plot multiple lines in one plot to better compare trends between different data

18



Projects Overview

The projects are intended to enable students to create relevant and interesting
applications by combining concepts they have learned so far in the course. They are
designed to give students the opportunity to work with larger codebases in a
collaborative way that will be similar to what they may have to work with in a
real-world industry environment.

Mini Project 1: Sticks
Students will create a bot that plays the classic hand game Sticks, translating game
rules and strategies into code. They will explore the concepts of game states, valid
moves, and exceptions in programming. Students will also learn about solved
games, game complexity, and game theory The project requires knowledge of
variables, conditionals, functions, and while loops.

Mini Project 2: If Wikipedia could rap
Students will create a rap lyric generator using data from Wikipedia. First, students
will retrieve text from Wikipedia articles. Then, they will combine their knowledge of
Python with functions from external Python libraries to find rhyming words, word
counts, and syllable counts to configure their rap lyrics. The project covers concepts
such as nested loops, conditional statements,libraries, and lists.

Final Project: Movie Prediction Machine
Students will leverage their Python and data science skills to analyze a large data set
about movies. Students will use Python library Pandas to process the data set and
create data visualizations to understand what makes movies successful. Students
will then use those insights to pitch an original movie and feed their pitch into a
generative AI model to create a poster of their idea.

19



Kernels of Curiosity Overview

The kernels of curiosity cover concepts beyond programming that are critical to
their understanding of how computer science shows up in the real world in different
ways, and the risks and limitations associated with it.

Kernel of Curiosity 1: Data under the Hood
Students will explore the world of binary numbers. They will learn to translate decimal
numbers into binary and understand the difference between base-10 and base-2
number systems. Students will also discover how computers use bits to store digital
information, and they will discuss the causes of integer overflow and floating point
imprecision. Students will also explore the concept of data compression, which helps
to reduce the size of digital data.

Kernel of Curiosity 2: Theory of Computing
Students will learn about algorithms, computational complexity, and Big-O notation
as a measure of algorithm efficiency. They'll explore linear and binary search
methods, using a card deck and phone book as examples. Students will learn about
undecidable problems in computer science, like the halting problem and the game
completion problem, that can't be solved in every instance using computers. They'll
also understand the efficiency of algorithms and how it determines the feasibility of
solving problems.

Kernel of Curiosity 3: Computer Systems and Networks
Students will explore how the Internet works and how interconnected computer
devices transfer data. They'll learn about data and metadata fields of Internet
packets using protocols like IP, TCP, and UDP. The lesson also covers parallel and
distributed computing, focusing on how humans and computers can work together
to solve problems at scale.

20



Kernel of Curiosity 4: Privacy and Ownership
Students will learn about the privacy implications of many common technologies
and why privacy protections are valuable. Students will learn about the question of
intellectual ownership in software and how it affects engineer responsibility and
public policy. Students will discuss the importance of addressing legal and ethical
concerns in computing.

Kernel of Curiosity 5: Community and Access
In this lesson, students learn how parallelism helps both computers and humans find
solutions at scale. Students will conceptually learn a parallel approach to Python
for-loops and practice using formulas to compare the runtime of parallel and
sequential computing solutions. Distributed approaches to performing tasks exist for
not only computers, but also humans. In particular, a lot of data processing and
creation is performed in parallel by many people doing small tasks across the world.
While this sharing of resources greatly expands the scope of computing and
engineering, it also raises new legal and ethical challenges around intellectual
ownership, engineer responsibility, and equitable access to technology.

21


